"use strict"; /** * @const * In kHz */ var OSCILLATOR_FREQ = 1193.1816666; // 1.193182 MHz /** * @constructor * * Programmable Interval Timer */ function PIT(cpu, bus) { /** @const @type {CPU} */ this.cpu = cpu; this.bus = bus; this.counter_start_time = new Float64Array(3); this.counter_start_value = new Uint16Array(3); this.counter_next_low = new Uint8Array(4); this.counter_enabled = new Uint8Array(4); this.counter_mode = new Uint8Array(4); this.counter_read_mode = new Uint8Array(4); // 2 = latch low, 1 = latch high, 0 = no latch this.counter_latch = new Uint8Array(4); this.counter_latch_value = new Uint16Array(3); this.counter_reload = new Uint16Array(3); // TODO: // - counter2 can be controlled by an input cpu.io.register_read(0x61, this, function() { var now = v86.microtick(); var ref_toggle = (now * (1000 * 1000 / 15000)) & 1; var counter2_out = this.did_rollover(2, now); return ref_toggle << 4 | counter2_out << 5; }); cpu.io.register_write(0x61, this, function(data) { if(data & 1) { this.bus.send("pcspeaker-enable"); } else { this.bus.send("pcspeaker-disable"); } }); cpu.io.register_read(0x40, this, function() { return this.counter_read(0); }); cpu.io.register_read(0x41, this, function() { return this.counter_read(1); }); cpu.io.register_read(0x42, this, function() { return this.counter_read(2); }); cpu.io.register_write(0x40, this, function(data) { this.counter_write(0, data); }); cpu.io.register_write(0x41, this, function(data) { this.counter_write(1, data); }); cpu.io.register_write(0x42, this, function(data) { this.counter_write(2, data); this.bus.send("pcspeaker-update", [this.counter_mode[2], this.counter_reload[2]]); }); cpu.io.register_write(0x43, this, this.port43_write); } PIT.prototype.get_state = function() { var state = []; state[0] = this.counter_next_low; state[1] = this.counter_enabled; state[2] = this.counter_mode; state[3] = this.counter_read_mode; state[4] = this.counter_latch; state[5] = this.counter_latch_value; state[6] = this.counter_reload; state[7] = this.counter_start_time; state[8] = this.counter_start_value; return state; }; PIT.prototype.set_state = function(state) { this.counter_next_low = state[0]; this.counter_enabled = state[1]; this.counter_mode = state[2]; this.counter_read_mode = state[3]; this.counter_latch = state[4]; this.counter_latch_value = state[5]; this.counter_reload = state[6]; this.counter_start_time = state[7]; this.counter_start_value = state[8]; }; PIT.prototype.timer = function(now, no_irq) { var time_to_next_interrupt = 100; // counter 0 produces interrupts if(!no_irq) { if(this.counter_enabled[0] && this.did_rollover(0, now)) { this.counter_start_value[0] = this.get_counter_value(0, now); this.counter_start_time[0] = now; dbg_log("pit interrupt. new value: " + this.counter_start_value[0], LOG_PIT); // This isn't strictly correct, but it's necessary since browsers // may sleep longer than necessary to trigger the else branch below // and clear the irq this.cpu.device_lower_irq(0); this.cpu.device_raise_irq(0); var mode = this.counter_mode[0]; if(mode === 0) { this.counter_enabled[0] = 0; } } else { this.cpu.device_lower_irq(0); } if(this.counter_enabled[0]) { const diff = now - this.counter_start_time[0]; const diff_in_ticks = Math.floor(diff * OSCILLATOR_FREQ); const ticks_missing = this.counter_start_value[0] - diff_in_ticks; // XXX: to simplify time_to_next_interrupt = ticks_missing / OSCILLATOR_FREQ; } } return time_to_next_interrupt; }; PIT.prototype.get_counter_value = function(i, now) { if(!this.counter_enabled[i]) { return 0; } var diff = now - this.counter_start_time[i]; var diff_in_ticks = Math.floor(diff * OSCILLATOR_FREQ); var value = this.counter_start_value[i] - diff_in_ticks; dbg_log("diff=" + diff + " dticks=" + diff_in_ticks + " value=" + value + " reload=" + this.counter_reload[i], LOG_PIT); var reload = this.counter_reload[i]; if(value >= reload) { dbg_log("Warning: Counter" + i + " value " + value + " is larger than reload " + reload, LOG_PIT); value %= reload; } else if(value < 0) { value = value % reload + reload; } return value; }; PIT.prototype.did_rollover = function(i, now) { var diff = now - this.counter_start_time[i]; if(diff < 0) { // should only happen after restore_state dbg_log("Warning: PIT timer difference is negative, resetting (timer " + i + ")"); return true; } var diff_in_ticks = Math.floor(diff * OSCILLATOR_FREQ); //dbg_log(i + ": diff=" + diff + " start_time=" + this.counter_start_time[i] + " diff_in_ticks=" + diff_in_ticks + " (" + diff * OSCILLATOR_FREQ + ") start_value=" + this.counter_start_value[i] + " did_rollover=" + (this.counter_start_value[i] < diff_in_ticks), LOG_PIT); return this.counter_start_value[i] < diff_in_ticks; }; PIT.prototype.counter_read = function(i) { var latch = this.counter_latch[i]; if(latch) { this.counter_latch[i]--; if(latch === 2) { return this.counter_latch_value[i] & 0xFF; } else { return this.counter_latch_value[i] >> 8; } } else { var next_low = this.counter_next_low[i]; if(this.counter_mode[i] === 3) { this.counter_next_low[i] ^= 1; } var value = this.get_counter_value(i, v86.microtick()); if(next_low) { return value & 0xFF; } else { return value >> 8; } } }; PIT.prototype.counter_write = function(i, value) { if(this.counter_next_low[i]) { this.counter_reload[i] = this.counter_reload[i] & ~0xFF | value; } else { this.counter_reload[i] = this.counter_reload[i] & 0xFF | value << 8; } if(this.counter_read_mode[i] !== 3 || !this.counter_next_low[i]) { if(!this.counter_reload[i]) { this.counter_reload[i] = 0xFFFF; } // depends on the mode, should actually // happen on the first tick this.counter_start_value[i] = this.counter_reload[i]; this.counter_enabled[i] = true; this.counter_start_time[i] = v86.microtick(); dbg_log("counter" + i + " reload=" + h(this.counter_reload[i]) + " tick=" + (this.counter_reload[i] || 0x10000) / OSCILLATOR_FREQ + "ms", LOG_PIT); } if(this.counter_read_mode[i] === 3) { this.counter_next_low[i] ^= 1; } }; PIT.prototype.port43_write = function(reg_byte) { var mode = reg_byte >> 1 & 7, binary_mode = reg_byte & 1, i = reg_byte >> 6 & 3, read_mode = reg_byte >> 4 & 3; if(i === 1) { dbg_log("Unimplemented timer1", LOG_PIT); } if(i === 3) { dbg_log("Unimplemented read back", LOG_PIT); return; } if(read_mode === 0) { // latch this.counter_latch[i] = 2; var value = this.get_counter_value(i, v86.microtick()); dbg_log("latch: " + value, LOG_PIT); this.counter_latch_value[i] = value ? value - 1 : 0; return; } if(mode >= 6) { // 6 and 7 are aliased to 2 and 3 mode &= ~4; } dbg_log("Control: mode=" + mode + " ctr=" + i + " read_mode=" + read_mode + " bcd=" + binary_mode, LOG_PIT); if(read_mode === 1) { // msb this.counter_next_low[i] = 0; } else if(read_mode === 2) { // lsb this.counter_next_low[i] = 1; } else { // first lsb then msb this.counter_next_low[i] = 1; } if(i === 0) { this.cpu.device_lower_irq(0); } if(mode === 0) { } else if(mode === 3 || mode === 2) { // what is the difference } else { dbg_log("Unimplemented counter mode: " + h(mode), LOG_PIT); } this.counter_mode[i] = mode; this.counter_read_mode[i] = read_mode; if(i === 2) { this.bus.send("pcspeaker-update", [this.counter_mode[2], this.counter_reload[2]]); } }; PIT.prototype.dump = function() { const reload = this.counter_reload[0]; const time = (reload || 0x10000) / OSCILLATOR_FREQ; dbg_log("counter0 ticks every " + time + "ms (reload=" + reload + ")"); };