"use strict"; /** * The ISA IO bus * Devices register their ports here * * @constructor * @param {CPU} cpu */ function IO(cpu) { /** @const */ this.ports = []; /** @const @type {CPU} */ this.cpu = cpu; for(var i = 0; i < 0x10000; i++) { this.ports[i] = this.create_empty_entry(); } var memory_size = cpu.memory_size[0]; for(var i = 0; (i << MMAP_BLOCK_BITS) < memory_size; i++) { // avoid sparse arrays cpu.memory_map_read8[i] = cpu.memory_map_write8[i] = undefined; cpu.memory_map_read32[i] = cpu.memory_map_write32[i] = undefined; } this.mmap_register(memory_size, 0x100000000 - memory_size, function(addr) { // read outside of the memory size dbg_log("Read from unmapped memory space, addr=" + h(addr >>> 0, 8), LOG_IO); return 0xFF; }, function(addr, value) { // write outside of the memory size dbg_log("Write to unmapped memory space, addr=" + h(addr >>> 0, 8) + " value=" + h(value, 2), LOG_IO); }, function(addr) { dbg_log("Read from unmapped memory space, addr=" + h(addr >>> 0, 8), LOG_IO); return -1; }, function(addr, value) { dbg_log("Write to unmapped memory space, addr=" + h(addr >>> 0, 8) + " value=" + h(value >>> 0, 8), LOG_IO); } ); } IO.prototype.create_empty_entry = function() { return { read8: this.empty_port_read8, read16: this.empty_port_read16, read32: this.empty_port_read32, write8: this.empty_port_write, write16: this.empty_port_write, write32: this.empty_port_write, device: undefined, }; }; IO.prototype.empty_port_read8 = function() { return 0xFF; }; IO.prototype.empty_port_read16 = function() { return 0xFFFF; }; IO.prototype.empty_port_read32 = function() { return -1; }; IO.prototype.empty_port_write = function(x) { }; /** * @param {number} port_addr * @param {Object} device * @param {function():number=} r8 * @param {function():number=} r16 * @param {function():number=} r32 */ IO.prototype.register_read = function(port_addr, device, r8, r16, r32) { dbg_assert(typeof port_addr === "number"); dbg_assert(typeof device === "object"); dbg_assert(!r8 || typeof r8 === "function"); dbg_assert(!r16 || typeof r16 === "function"); dbg_assert(!r32 || typeof r32 === "function"); dbg_assert(r8 || r16 || r32); if(DEBUG) { var fail = function(n) { dbg_assert(false, "Overlapped read" + n + " " + h(port_addr, 4) + " (" + device.name + ")"); return -1 >>> (32 - n) | 0; }; if(!r8) r8 = fail.bind(this, 8); if(!r16) r16 = fail.bind(this, 16); if(!r32) r32 = fail.bind(this, 32); } if(r8) this.ports[port_addr].read8 = r8; if(r16) this.ports[port_addr].read16 = r16; if(r32) this.ports[port_addr].read32 = r32; this.ports[port_addr].device = device; }; /** * @param {number} port_addr * @param {Object} device * @param {function(number)=} w8 * @param {function(number)=} w16 * @param {function(number)=} w32 */ IO.prototype.register_write = function(port_addr, device, w8, w16, w32) { dbg_assert(typeof port_addr === "number"); dbg_assert(typeof device === "object"); dbg_assert(!w8 || typeof w8 === "function"); dbg_assert(!w16 || typeof w16 === "function"); dbg_assert(!w32 || typeof w32 === "function"); dbg_assert(w8 || w16 || w32); if(DEBUG) { var fail = function(n) { dbg_assert(false, "Overlapped write" + n + " " + h(port_addr) + " (" + device.name + ")"); }; if(!w8) w8 = fail.bind(this, 8); if(!w16) w16 = fail.bind(this, 16); if(!w32) w32 = fail.bind(this, 32); } if(w8) this.ports[port_addr].write8 = w8; if(w16) this.ports[port_addr].write16 = w16; if(w32) this.ports[port_addr].write32 = w32; this.ports[port_addr].device = device; }; /** * > Any two consecutive 8-bit ports can be treated as a 16-bit port; * > and four consecutive 8-bit ports can be treated as a 32-bit port * > http://css.csail.mit.edu/6.858/2012/readings/i386/s08_01.htm * * This info is not correct for all ports, but handled by the following functions * * Register the write of 2 or 4 consecutive 8-bit ports, 1 or 2 16-bit * ports and 0 or 1 32-bit ports * * @param {number} port_addr * @param {!Object} device * @param {function():number} r8_1 * @param {function():number} r8_2 * @param {function():number=} r8_3 * @param {function():number=} r8_4 */ IO.prototype.register_read_consecutive = function(port_addr, device, r8_1, r8_2, r8_3, r8_4) { dbg_assert(arguments.length === 4 || arguments.length === 6); function r16_1() { return r8_1.call(this) | r8_2.call(this) << 8; } function r16_2() { return r8_3.call(this) | r8_4.call(this) << 8; } function r32() { return r8_1.call(this) | r8_2.call(this) << 8 | r8_3.call(this) << 16 | r8_4.call(this) << 24; } if(r8_3 && r8_4) { this.register_read(port_addr, device, r8_1, r16_1, r32); this.register_read(port_addr + 1, device, r8_2); this.register_read(port_addr + 2, device, r8_3, r16_2); this.register_read(port_addr + 3, device, r8_4); } else { this.register_read(port_addr, device, r8_1, r16_1); this.register_read(port_addr + 1, device, r8_2); } }; /** * @param {number} port_addr * @param {!Object} device * @param {function(number)} w8_1 * @param {function(number)} w8_2 * @param {function(number)=} w8_3 * @param {function(number)=} w8_4 */ IO.prototype.register_write_consecutive = function(port_addr, device, w8_1, w8_2, w8_3, w8_4) { dbg_assert(arguments.length === 4 || arguments.length === 6); function w16_1(data) { w8_1.call(this, data & 0xFF); w8_2.call(this, data >> 8 & 0xFF); } function w16_2(data) { w8_3.call(this, data & 0xFF); w8_4.call(this, data >> 8 & 0xFF); } function w32(data) { w8_1.call(this, data & 0xFF); w8_2.call(this, data >> 8 & 0xFF); w8_3.call(this, data >> 16 & 0xFF); w8_4.call(this, data >>> 24); } if(w8_3 && w8_4) { this.register_write(port_addr, device, w8_1, w16_1, w32); this.register_write(port_addr + 1, device, w8_2); this.register_write(port_addr + 2, device, w8_3, w16_2); this.register_write(port_addr + 3, device, w8_4); } else { this.register_write(port_addr, device, w8_1, w16_1); this.register_write(port_addr + 1, device, w8_2); } }; IO.prototype.mmap_read32_shim = function(addr) { var aligned_addr = addr >>> MMAP_BLOCK_BITS; var fn = this.cpu.memory_map_read8[aligned_addr]; return fn(addr) | fn(addr + 1) << 8 | fn(addr + 2) << 16 | fn(addr + 3) << 24; }; IO.prototype.mmap_write32_shim = function(addr, value) { var aligned_addr = addr >>> MMAP_BLOCK_BITS; var fn = this.cpu.memory_map_write8[aligned_addr]; fn(addr, value & 0xFF); fn(addr + 1, value >> 8 & 0xFF); fn(addr + 2, value >> 16 & 0xFF); fn(addr + 3, value >>> 24); }; /** * @param {number} addr * @param {number} size * @param {*} read_func8 * @param {*} write_func8 * @param {*=} read_func32 * @param {*=} write_func32 */ IO.prototype.mmap_register = function(addr, size, read_func8, write_func8, read_func32, write_func32) { dbg_log("mmap_register addr=" + h(addr >>> 0, 8) + " size=" + h(size, 8), LOG_IO); dbg_assert((addr & MMAP_BLOCK_SIZE - 1) === 0); dbg_assert(size && (size & MMAP_BLOCK_SIZE - 1) === 0); if(!read_func32) read_func32 = this.mmap_read32_shim.bind(this); if(!write_func32) write_func32 = this.mmap_write32_shim.bind(this); var aligned_addr = addr >>> MMAP_BLOCK_BITS; for(; size > 0; aligned_addr++) { this.cpu.memory_map_read8[aligned_addr] = read_func8; this.cpu.memory_map_write8[aligned_addr] = write_func8; this.cpu.memory_map_read32[aligned_addr] = read_func32; this.cpu.memory_map_write32[aligned_addr] = write_func32; size -= MMAP_BLOCK_SIZE; } }; IO.prototype.port_write8 = function(port_addr, data) { var entry = this.ports[port_addr]; if(entry.write8 === this.empty_port_write || LOG_ALL_IO) { dbg_log( "write8 port #" + h(port_addr, 4) + " <- " + h(data, 2) + this.get_port_description(port_addr), LOG_IO ); } return entry.write8.call(entry.device, data); }; IO.prototype.port_write16 = function(port_addr, data) { var entry = this.ports[port_addr]; if(entry.write16 === this.empty_port_write || LOG_ALL_IO) { dbg_log( "write16 port #" + h(port_addr, 4) + " <- " + h(data, 4) + this.get_port_description(port_addr), LOG_IO ); } return entry.write16.call(entry.device, data); }; IO.prototype.port_write32 = function(port_addr, data) { var entry = this.ports[port_addr]; if(entry.write32 === this.empty_port_write || LOG_ALL_IO) { dbg_log( "write32 port #" + h(port_addr, 4) + " <- " + h(data >>> 0, 8) + this.get_port_description(port_addr), LOG_IO ); } return entry.write32.call(entry.device, data); }; IO.prototype.port_read8 = function(port_addr) { var entry = this.ports[port_addr]; if(entry.read8 === this.empty_port_read8 || LOG_ALL_IO) { dbg_log( "read8 port #" + h(port_addr, 4) + this.get_port_description(port_addr), LOG_IO ); } var value = entry.read8.call(entry.device); dbg_assert(value < 0x100, "8 bit port returned large value: " + h(port_addr)); return value; }; IO.prototype.port_read16 = function(port_addr) { var entry = this.ports[port_addr]; if(entry.read16 === this.empty_port_read16 || LOG_ALL_IO) { dbg_log( "read16 port #" + h(port_addr, 4) + this.get_port_description(port_addr), LOG_IO ); } var value = entry.read16.call(entry.device); dbg_assert(value < 0x10000 && value >= 0, "16 bit port returned large value: " + h(port_addr)); return value; }; IO.prototype.port_read32 = function(port_addr) { var entry = this.ports[port_addr]; if(entry.read32 === this.empty_port_read32 || LOG_ALL_IO) { dbg_log( "read32 port #" + h(port_addr, 4) + this.get_port_description(port_addr), LOG_IO ); } var value = entry.read32.call(entry.device); dbg_assert((value | 0) === value); return value; }; // via seabios ioport.h var debug_port_list = { 0x0004: "PORT_DMA_ADDR_2", 0x0005: "PORT_DMA_CNT_2", 0x000a: "PORT_DMA1_MASK_REG", 0x000b: "PORT_DMA1_MODE_REG", 0x000c: "PORT_DMA1_CLEAR_FF_REG", 0x000d: "PORT_DMA1_MASTER_CLEAR", 0x0020: "PORT_PIC1_CMD", 0x0021: "PORT_PIC1_DATA", 0x0040: "PORT_PIT_COUNTER0", 0x0041: "PORT_PIT_COUNTER1", 0x0042: "PORT_PIT_COUNTER2", 0x0043: "PORT_PIT_MODE", 0x0060: "PORT_PS2_DATA", 0x0061: "PORT_PS2_CTRLB", 0x0064: "PORT_PS2_STATUS", 0x0070: "PORT_CMOS_INDEX", 0x0071: "PORT_CMOS_DATA", 0x0080: "PORT_DIAG", 0x0081: "PORT_DMA_PAGE_2", 0x0092: "PORT_A20", 0x00a0: "PORT_PIC2_CMD", 0x00a1: "PORT_PIC2_DATA", 0x00b2: "PORT_SMI_CMD", 0x00b3: "PORT_SMI_STATUS", 0x00d4: "PORT_DMA2_MASK_REG", 0x00d6: "PORT_DMA2_MODE_REG", 0x00da: "PORT_DMA2_MASTER_CLEAR", 0x00f0: "PORT_MATH_CLEAR", 0x0170: "PORT_ATA2_CMD_BASE", 0x01f0: "PORT_ATA1_CMD_BASE", 0x0278: "PORT_LPT2", 0x02e8: "PORT_SERIAL4", 0x02f8: "PORT_SERIAL2", 0x0374: "PORT_ATA2_CTRL_BASE", 0x0378: "PORT_LPT1", 0x03e8: "PORT_SERIAL3", //0x03f4: "PORT_ATA1_CTRL_BASE", 0x03f0: "PORT_FD_BASE", 0x03f2: "PORT_FD_DOR", 0x03f4: "PORT_FD_STATUS", 0x03f5: "PORT_FD_DATA", 0x03f6: "PORT_HD_DATA", 0x03f7: "PORT_FD_DIR", 0x03f8: "PORT_SERIAL1", 0x0cf8: "PORT_PCI_CMD", 0x0cf9: "PORT_PCI_REBOOT", 0x0cfc: "PORT_PCI_DATA", 0x0402: "PORT_BIOS_DEBUG", 0x0510: "PORT_QEMU_CFG_CTL", 0x0511: "PORT_QEMU_CFG_DATA", 0xb000: "PORT_ACPI_PM_BASE", 0xb100: "PORT_SMB_BASE", 0x8900: "PORT_BIOS_APM" }; IO.prototype.get_port_description = function(addr) { if(debug_port_list[addr]) { return " (" + debug_port_list[addr] + ")"; } else { return ""; } };