projecte_ionic/node_modules/svgo/plugins/convertPathData.js
2022-02-09 18:30:03 +01:00

1024 lines
28 KiB
JavaScript
Executable file
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'use strict';
const { collectStylesheet, computeStyle } = require('../lib/style.js');
const { pathElems } = require('./_collections.js');
const { path2js, js2path } = require('./_path.js');
const { applyTransforms } = require('./_applyTransforms.js');
const { cleanupOutData } = require('../lib/svgo/tools');
exports.name = 'convertPathData';
exports.type = 'visitor';
exports.active = true;
exports.description =
'optimizes path data: writes in shorter form, applies transformations';
exports.params = {
applyTransforms: true,
applyTransformsStroked: true,
makeArcs: {
threshold: 2.5, // coefficient of rounding error
tolerance: 0.5, // percentage of radius
},
straightCurves: true,
lineShorthands: true,
curveSmoothShorthands: true,
floatPrecision: 3,
transformPrecision: 5,
removeUseless: true,
collapseRepeated: true,
utilizeAbsolute: true,
leadingZero: true,
negativeExtraSpace: true,
noSpaceAfterFlags: false, // a20 60 45 0 1 30 20 → a20 60 45 0130 20
forceAbsolutePath: false,
};
let roundData;
let precision;
let error;
let arcThreshold;
let arcTolerance;
/**
* Convert absolute Path to relative,
* collapse repeated instructions,
* detect and convert Lineto shorthands,
* remove useless instructions like "l0,0",
* trim useless delimiters and leading zeros,
* decrease accuracy of floating-point numbers.
*
* @see https://www.w3.org/TR/SVG11/paths.html#PathData
*
* @param {Object} item current iteration item
* @param {Object} params plugin params
* @return {Boolean} if false, item will be filtered out
*
* @author Kir Belevich
*/
exports.fn = (root, params) => {
const stylesheet = collectStylesheet(root);
return {
element: {
enter: (node) => {
if (pathElems.includes(node.name) && node.attributes.d != null) {
const computedStyle = computeStyle(stylesheet, node);
precision = params.floatPrecision;
error =
precision !== false
? +Math.pow(0.1, precision).toFixed(precision)
: 1e-2;
roundData = precision > 0 && precision < 20 ? strongRound : round;
if (params.makeArcs) {
arcThreshold = params.makeArcs.threshold;
arcTolerance = params.makeArcs.tolerance;
}
const hasMarkerMid = computedStyle['marker-mid'] != null;
const maybeHasStroke =
computedStyle.stroke &&
(computedStyle.stroke.type === 'dynamic' ||
computedStyle.stroke.value !== 'none');
const maybeHasLinecap =
computedStyle['stroke-linecap'] &&
(computedStyle['stroke-linecap'].type === 'dynamic' ||
computedStyle['stroke-linecap'].value !== 'butt');
const maybeHasStrokeAndLinecap = maybeHasStroke && maybeHasLinecap;
var data = path2js(node);
// TODO: get rid of functions returns
if (data.length) {
if (params.applyTransforms) {
applyTransforms(node, data, params);
}
convertToRelative(data);
data = filters(data, params, {
maybeHasStrokeAndLinecap,
hasMarkerMid,
});
if (params.utilizeAbsolute) {
data = convertToMixed(data, params);
}
js2path(node, data, params);
}
}
},
},
};
};
/**
* Convert absolute path data coordinates to relative.
*
* @param {Array} path input path data
* @param {Object} params plugin params
* @return {Array} output path data
*/
const convertToRelative = (pathData) => {
let start = [0, 0];
let cursor = [0, 0];
let prevCoords = [0, 0];
for (let i = 0; i < pathData.length; i += 1) {
const pathItem = pathData[i];
let { command, args } = pathItem;
// moveto (x y)
if (command === 'm') {
// update start and cursor
cursor[0] += args[0];
cursor[1] += args[1];
start[0] = cursor[0];
start[1] = cursor[1];
}
if (command === 'M') {
// M → m
// skip first moveto
if (i !== 0) {
command = 'm';
}
args[0] -= cursor[0];
args[1] -= cursor[1];
// update start and cursor
cursor[0] += args[0];
cursor[1] += args[1];
start[0] = cursor[0];
start[1] = cursor[1];
}
// lineto (x y)
if (command === 'l') {
cursor[0] += args[0];
cursor[1] += args[1];
}
if (command === 'L') {
// L → l
command = 'l';
args[0] -= cursor[0];
args[1] -= cursor[1];
cursor[0] += args[0];
cursor[1] += args[1];
}
// horizontal lineto (x)
if (command === 'h') {
cursor[0] += args[0];
}
if (command === 'H') {
// H → h
command = 'h';
args[0] -= cursor[0];
cursor[0] += args[0];
}
// vertical lineto (y)
if (command === 'v') {
cursor[1] += args[0];
}
if (command === 'V') {
// V → v
command = 'v';
args[0] -= cursor[1];
cursor[1] += args[0];
}
// curveto (x1 y1 x2 y2 x y)
if (command === 'c') {
cursor[0] += args[4];
cursor[1] += args[5];
}
if (command === 'C') {
// C → c
command = 'c';
args[0] -= cursor[0];
args[1] -= cursor[1];
args[2] -= cursor[0];
args[3] -= cursor[1];
args[4] -= cursor[0];
args[5] -= cursor[1];
cursor[0] += args[4];
cursor[1] += args[5];
}
// smooth curveto (x2 y2 x y)
if (command === 's') {
cursor[0] += args[2];
cursor[1] += args[3];
}
if (command === 'S') {
// S → s
command = 's';
args[0] -= cursor[0];
args[1] -= cursor[1];
args[2] -= cursor[0];
args[3] -= cursor[1];
cursor[0] += args[2];
cursor[1] += args[3];
}
// quadratic Bézier curveto (x1 y1 x y)
if (command === 'q') {
cursor[0] += args[2];
cursor[1] += args[3];
}
if (command === 'Q') {
// Q → q
command = 'q';
args[0] -= cursor[0];
args[1] -= cursor[1];
args[2] -= cursor[0];
args[3] -= cursor[1];
cursor[0] += args[2];
cursor[1] += args[3];
}
// smooth quadratic Bézier curveto (x y)
if (command === 't') {
cursor[0] += args[0];
cursor[1] += args[1];
}
if (command === 'T') {
// T → t
command = 't';
args[0] -= cursor[0];
args[1] -= cursor[1];
cursor[0] += args[0];
cursor[1] += args[1];
}
// elliptical arc (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
if (command === 'a') {
cursor[0] += args[5];
cursor[1] += args[6];
}
if (command === 'A') {
// A → a
command = 'a';
args[5] -= cursor[0];
args[6] -= cursor[1];
cursor[0] += args[5];
cursor[1] += args[6];
}
// closepath
if (command === 'Z' || command === 'z') {
// reset cursor
cursor[0] = start[0];
cursor[1] = start[1];
}
pathItem.command = command;
pathItem.args = args;
// store absolute coordinates for later use
// base should preserve reference from other element
pathItem.base = prevCoords;
pathItem.coords = [cursor[0], cursor[1]];
prevCoords = pathItem.coords;
}
return pathData;
};
/**
* Main filters loop.
*
* @param {Array} path input path data
* @param {Object} params plugin params
* @return {Array} output path data
*/
function filters(path, params, { maybeHasStrokeAndLinecap, hasMarkerMid }) {
var stringify = data2Path.bind(null, params),
relSubpoint = [0, 0],
pathBase = [0, 0],
prev = {};
path = path.filter(function (item, index, path) {
let command = item.command;
let data = item.args;
let next = path[index + 1];
if (command !== 'Z' && command !== 'z') {
var sdata = data,
circle;
if (command === 's') {
sdata = [0, 0].concat(data);
if (command === 'c' || command === 's') {
var pdata = prev.args,
n = pdata.length;
// (-x, -y) of the prev tangent point relative to the current point
sdata[0] = pdata[n - 2] - pdata[n - 4];
sdata[1] = pdata[n - 1] - pdata[n - 3];
}
}
// convert curves to arcs if possible
if (
params.makeArcs &&
(command == 'c' || command == 's') &&
isConvex(sdata) &&
(circle = findCircle(sdata))
) {
var r = roundData([circle.radius])[0],
angle = findArcAngle(sdata, circle),
sweep = sdata[5] * sdata[0] - sdata[4] * sdata[1] > 0 ? 1 : 0,
arc = {
command: 'a',
args: [r, r, 0, 0, sweep, sdata[4], sdata[5]],
coords: item.coords.slice(),
base: item.base,
},
output = [arc],
// relative coordinates to adjust the found circle
relCenter = [
circle.center[0] - sdata[4],
circle.center[1] - sdata[5],
],
relCircle = { center: relCenter, radius: circle.radius },
arcCurves = [item],
hasPrev = 0,
suffix = '',
nextLonghand;
if (
(prev.command == 'c' &&
isConvex(prev.args) &&
isArcPrev(prev.args, circle)) ||
(prev.command == 'a' && prev.sdata && isArcPrev(prev.sdata, circle))
) {
arcCurves.unshift(prev);
arc.base = prev.base;
arc.args[5] = arc.coords[0] - arc.base[0];
arc.args[6] = arc.coords[1] - arc.base[1];
var prevData = prev.command == 'a' ? prev.sdata : prev.args;
var prevAngle = findArcAngle(prevData, {
center: [
prevData[4] + circle.center[0],
prevData[5] + circle.center[1],
],
radius: circle.radius,
});
angle += prevAngle;
if (angle > Math.PI) arc.args[3] = 1;
hasPrev = 1;
}
// check if next curves are fitting the arc
for (
var j = index;
(next = path[++j]) && ~'cs'.indexOf(next.command);
) {
var nextData = next.args;
if (next.command == 's') {
nextLonghand = makeLonghand(
{ command: 's', args: next.args.slice() },
path[j - 1].args
);
nextData = nextLonghand.args;
nextLonghand.args = nextData.slice(0, 2);
suffix = stringify([nextLonghand]);
}
if (isConvex(nextData) && isArc(nextData, relCircle)) {
angle += findArcAngle(nextData, relCircle);
if (angle - 2 * Math.PI > 1e-3) break; // more than 360°
if (angle > Math.PI) arc.args[3] = 1;
arcCurves.push(next);
if (2 * Math.PI - angle > 1e-3) {
// less than 360°
arc.coords = next.coords;
arc.args[5] = arc.coords[0] - arc.base[0];
arc.args[6] = arc.coords[1] - arc.base[1];
} else {
// full circle, make a half-circle arc and add a second one
arc.args[5] = 2 * (relCircle.center[0] - nextData[4]);
arc.args[6] = 2 * (relCircle.center[1] - nextData[5]);
arc.coords = [
arc.base[0] + arc.args[5],
arc.base[1] + arc.args[6],
];
arc = {
command: 'a',
args: [
r,
r,
0,
0,
sweep,
next.coords[0] - arc.coords[0],
next.coords[1] - arc.coords[1],
],
coords: next.coords,
base: arc.coords,
};
output.push(arc);
j++;
break;
}
relCenter[0] -= nextData[4];
relCenter[1] -= nextData[5];
} else break;
}
if ((stringify(output) + suffix).length < stringify(arcCurves).length) {
if (path[j] && path[j].command == 's') {
makeLonghand(path[j], path[j - 1].args);
}
if (hasPrev) {
var prevArc = output.shift();
roundData(prevArc.args);
relSubpoint[0] += prevArc.args[5] - prev.args[prev.args.length - 2];
relSubpoint[1] += prevArc.args[6] - prev.args[prev.args.length - 1];
prev.command = 'a';
prev.args = prevArc.args;
item.base = prev.coords = prevArc.coords;
}
arc = output.shift();
if (arcCurves.length == 1) {
item.sdata = sdata.slice(); // preserve curve data for future checks
} else if (arcCurves.length - 1 - hasPrev > 0) {
// filter out consumed next items
path.splice.apply(
path,
[index + 1, arcCurves.length - 1 - hasPrev].concat(output)
);
}
if (!arc) return false;
command = 'a';
data = arc.args;
item.coords = arc.coords;
}
}
// Rounding relative coordinates, taking in account accummulating error
// to get closer to absolute coordinates. Sum of rounded value remains same:
// l .25 3 .25 2 .25 3 .25 2 -> l .3 3 .2 2 .3 3 .2 2
if (precision !== false) {
if (
command === 'm' ||
command === 'l' ||
command === 't' ||
command === 'q' ||
command === 's' ||
command === 'c'
) {
for (var i = data.length; i--; ) {
data[i] += item.base[i % 2] - relSubpoint[i % 2];
}
} else if (command == 'h') {
data[0] += item.base[0] - relSubpoint[0];
} else if (command == 'v') {
data[0] += item.base[1] - relSubpoint[1];
} else if (command == 'a') {
data[5] += item.base[0] - relSubpoint[0];
data[6] += item.base[1] - relSubpoint[1];
}
roundData(data);
if (command == 'h') relSubpoint[0] += data[0];
else if (command == 'v') relSubpoint[1] += data[0];
else {
relSubpoint[0] += data[data.length - 2];
relSubpoint[1] += data[data.length - 1];
}
roundData(relSubpoint);
if (command === 'M' || command === 'm') {
pathBase[0] = relSubpoint[0];
pathBase[1] = relSubpoint[1];
}
}
// convert straight curves into lines segments
if (params.straightCurves) {
if (
(command === 'c' && isCurveStraightLine(data)) ||
(command === 's' && isCurveStraightLine(sdata))
) {
if (next && next.command == 's') makeLonghand(next, data); // fix up next curve
command = 'l';
data = data.slice(-2);
} else if (command === 'q' && isCurveStraightLine(data)) {
if (next && next.command == 't') makeLonghand(next, data); // fix up next curve
command = 'l';
data = data.slice(-2);
} else if (
command === 't' &&
prev.command !== 'q' &&
prev.command !== 't'
) {
command = 'l';
data = data.slice(-2);
} else if (command === 'a' && (data[0] === 0 || data[1] === 0)) {
command = 'l';
data = data.slice(-2);
}
}
// horizontal and vertical line shorthands
// l 50 0 → h 50
// l 0 50 → v 50
if (params.lineShorthands && command === 'l') {
if (data[1] === 0) {
command = 'h';
data.pop();
} else if (data[0] === 0) {
command = 'v';
data.shift();
}
}
// collapse repeated commands
// h 20 h 30 -> h 50
if (
params.collapseRepeated &&
hasMarkerMid === false &&
(command === 'm' || command === 'h' || command === 'v') &&
prev.command &&
command == prev.command.toLowerCase() &&
((command != 'h' && command != 'v') ||
prev.args[0] >= 0 == data[0] >= 0)
) {
prev.args[0] += data[0];
if (command != 'h' && command != 'v') {
prev.args[1] += data[1];
}
prev.coords = item.coords;
path[index] = prev;
return false;
}
// convert curves into smooth shorthands
if (params.curveSmoothShorthands && prev.command) {
// curveto
if (command === 'c') {
// c + c → c + s
if (
prev.command === 'c' &&
data[0] === -(prev.args[2] - prev.args[4]) &&
data[1] === -(prev.args[3] - prev.args[5])
) {
command = 's';
data = data.slice(2);
}
// s + c → s + s
else if (
prev.command === 's' &&
data[0] === -(prev.args[0] - prev.args[2]) &&
data[1] === -(prev.args[1] - prev.args[3])
) {
command = 's';
data = data.slice(2);
}
// [^cs] + c → [^cs] + s
else if (
prev.command !== 'c' &&
prev.command !== 's' &&
data[0] === 0 &&
data[1] === 0
) {
command = 's';
data = data.slice(2);
}
}
// quadratic Bézier curveto
else if (command === 'q') {
// q + q → q + t
if (
prev.command === 'q' &&
data[0] === prev.args[2] - prev.args[0] &&
data[1] === prev.args[3] - prev.args[1]
) {
command = 't';
data = data.slice(2);
}
// t + q → t + t
else if (
prev.command === 't' &&
data[2] === prev.args[0] &&
data[3] === prev.args[1]
) {
command = 't';
data = data.slice(2);
}
}
}
// remove useless non-first path segments
if (params.removeUseless && !maybeHasStrokeAndLinecap) {
// l 0,0 / h 0 / v 0 / q 0,0 0,0 / t 0,0 / c 0,0 0,0 0,0 / s 0,0 0,0
if (
(command === 'l' ||
command === 'h' ||
command === 'v' ||
command === 'q' ||
command === 't' ||
command === 'c' ||
command === 's') &&
data.every(function (i) {
return i === 0;
})
) {
path[index] = prev;
return false;
}
// a 25,25 -30 0,1 0,0
if (command === 'a' && data[5] === 0 && data[6] === 0) {
path[index] = prev;
return false;
}
}
item.command = command;
item.args = data;
prev = item;
} else {
// z resets coordinates
relSubpoint[0] = pathBase[0];
relSubpoint[1] = pathBase[1];
if (prev.command === 'Z' || prev.command === 'z') return false;
prev = item;
}
return true;
});
return path;
}
/**
* Writes data in shortest form using absolute or relative coordinates.
*
* @param {Array} data input path data
* @return {Boolean} output
*/
function convertToMixed(path, params) {
var prev = path[0];
path = path.filter(function (item, index) {
if (index == 0) return true;
if (item.command === 'Z' || item.command === 'z') {
prev = item;
return true;
}
var command = item.command,
data = item.args,
adata = data.slice();
if (
command === 'm' ||
command === 'l' ||
command === 't' ||
command === 'q' ||
command === 's' ||
command === 'c'
) {
for (var i = adata.length; i--; ) {
adata[i] += item.base[i % 2];
}
} else if (command == 'h') {
adata[0] += item.base[0];
} else if (command == 'v') {
adata[0] += item.base[1];
} else if (command == 'a') {
adata[5] += item.base[0];
adata[6] += item.base[1];
}
roundData(adata);
var absoluteDataStr = cleanupOutData(adata, params),
relativeDataStr = cleanupOutData(data, params);
// Convert to absolute coordinates if it's shorter or forceAbsolutePath is true.
// v-20 -> V0
// Don't convert if it fits following previous command.
// l20 30-10-50 instead of l20 30L20 30
if (
params.forceAbsolutePath ||
(absoluteDataStr.length < relativeDataStr.length &&
!(
params.negativeExtraSpace &&
command == prev.command &&
prev.command.charCodeAt(0) > 96 &&
absoluteDataStr.length == relativeDataStr.length - 1 &&
(data[0] < 0 ||
(/^0\./.test(data[0]) && prev.args[prev.args.length - 1] % 1))
))
) {
item.command = command.toUpperCase();
item.args = adata;
}
prev = item;
return true;
});
return path;
}
/**
* Checks if curve is convex. Control points of such a curve must form
* a convex quadrilateral with diagonals crosspoint inside of it.
*
* @param {Array} data input path data
* @return {Boolean} output
*/
function isConvex(data) {
var center = getIntersection([
0,
0,
data[2],
data[3],
data[0],
data[1],
data[4],
data[5],
]);
return (
center &&
data[2] < center[0] == center[0] < 0 &&
data[3] < center[1] == center[1] < 0 &&
data[4] < center[0] == center[0] < data[0] &&
data[5] < center[1] == center[1] < data[1]
);
}
/**
* Computes lines equations by two points and returns their intersection point.
*
* @param {Array} coords 8 numbers for 4 pairs of coordinates (x,y)
* @return {Array|undefined} output coordinate of lines' crosspoint
*/
function getIntersection(coords) {
// Prev line equation parameters.
var a1 = coords[1] - coords[3], // y1 - y2
b1 = coords[2] - coords[0], // x2 - x1
c1 = coords[0] * coords[3] - coords[2] * coords[1], // x1 * y2 - x2 * y1
// Next line equation parameters
a2 = coords[5] - coords[7], // y1 - y2
b2 = coords[6] - coords[4], // x2 - x1
c2 = coords[4] * coords[7] - coords[5] * coords[6], // x1 * y2 - x2 * y1
denom = a1 * b2 - a2 * b1;
if (!denom) return; // parallel lines havn't an intersection
var cross = [(b1 * c2 - b2 * c1) / denom, (a1 * c2 - a2 * c1) / -denom];
if (
!isNaN(cross[0]) &&
!isNaN(cross[1]) &&
isFinite(cross[0]) &&
isFinite(cross[1])
) {
return cross;
}
}
/**
* Decrease accuracy of floating-point numbers
* in path data keeping a specified number of decimals.
* Smart rounds values like 2.3491 to 2.35 instead of 2.349.
* Doesn't apply "smartness" if the number precision fits already.
*
* @param {Array} data input data array
* @return {Array} output data array
*/
function strongRound(data) {
for (var i = data.length; i-- > 0; ) {
if (data[i].toFixed(precision) != data[i]) {
var rounded = +data[i].toFixed(precision - 1);
data[i] =
+Math.abs(rounded - data[i]).toFixed(precision + 1) >= error
? +data[i].toFixed(precision)
: rounded;
}
}
return data;
}
/**
* Simple rounding function if precision is 0.
*
* @param {Array} data input data array
* @return {Array} output data array
*/
function round(data) {
for (var i = data.length; i-- > 0; ) {
data[i] = Math.round(data[i]);
}
return data;
}
/**
* Checks if a curve is a straight line by measuring distance
* from middle points to the line formed by end points.
*
* @param {Array} xs array of curve points x-coordinates
* @param {Array} ys array of curve points y-coordinates
* @return {Boolean}
*/
function isCurveStraightLine(data) {
// Get line equation a·x + b·y + c = 0 coefficients a, b (c = 0) by start and end points.
var i = data.length - 2,
a = -data[i + 1], // y1 y2 (y1 = 0)
b = data[i], // x2 x1 (x1 = 0)
d = 1 / (a * a + b * b); // same part for all points
if (i <= 1 || !isFinite(d)) return false; // curve that ends at start point isn't the case
// Distance from point (x0, y0) to the line is sqrt((c a·x0 b·y0)² / (a² + b²))
while ((i -= 2) >= 0) {
if (Math.sqrt(Math.pow(a * data[i] + b * data[i + 1], 2) * d) > error)
return false;
}
return true;
}
/**
* Converts next curve from shorthand to full form using the current curve data.
*
* @param {Object} item curve to convert
* @param {Array} data current curve data
*/
function makeLonghand(item, data) {
switch (item.command) {
case 's':
item.command = 'c';
break;
case 't':
item.command = 'q';
break;
}
item.args.unshift(
data[data.length - 2] - data[data.length - 4],
data[data.length - 1] - data[data.length - 3]
);
return item;
}
/**
* Returns distance between two points
*
* @param {Array} point1 first point coordinates
* @param {Array} point2 second point coordinates
* @return {Number} distance
*/
function getDistance(point1, point2) {
return Math.hypot(point1[0] - point2[0], point1[1] - point2[1]);
}
/**
* Returns coordinates of the curve point corresponding to the certain t
* a·(1 - t)³·p1 + b·(1 - t)²·t·p2 + c·(1 - t)·t²·p3 + d·t³·p4,
* where pN are control points and p1 is zero due to relative coordinates.
*
* @param {Array} curve array of curve points coordinates
* @param {Number} t parametric position from 0 to 1
* @return {Array} Point coordinates
*/
function getCubicBezierPoint(curve, t) {
var sqrT = t * t,
cubT = sqrT * t,
mt = 1 - t,
sqrMt = mt * mt;
return [
3 * sqrMt * t * curve[0] + 3 * mt * sqrT * curve[2] + cubT * curve[4],
3 * sqrMt * t * curve[1] + 3 * mt * sqrT * curve[3] + cubT * curve[5],
];
}
/**
* Finds circle by 3 points of the curve and checks if the curve fits the found circle.
*
* @param {Array} curve
* @return {Object|undefined} circle
*/
function findCircle(curve) {
var midPoint = getCubicBezierPoint(curve, 1 / 2),
m1 = [midPoint[0] / 2, midPoint[1] / 2],
m2 = [(midPoint[0] + curve[4]) / 2, (midPoint[1] + curve[5]) / 2],
center = getIntersection([
m1[0],
m1[1],
m1[0] + m1[1],
m1[1] - m1[0],
m2[0],
m2[1],
m2[0] + (m2[1] - midPoint[1]),
m2[1] - (m2[0] - midPoint[0]),
]),
radius = center && getDistance([0, 0], center),
tolerance = Math.min(arcThreshold * error, (arcTolerance * radius) / 100);
if (
center &&
radius < 1e15 &&
[1 / 4, 3 / 4].every(function (point) {
return (
Math.abs(
getDistance(getCubicBezierPoint(curve, point), center) - radius
) <= tolerance
);
})
)
return { center: center, radius: radius };
}
/**
* Checks if a curve fits the given circle.
*
* @param {Object} circle
* @param {Array} curve
* @return {Boolean}
*/
function isArc(curve, circle) {
var tolerance = Math.min(
arcThreshold * error,
(arcTolerance * circle.radius) / 100
);
return [0, 1 / 4, 1 / 2, 3 / 4, 1].every(function (point) {
return (
Math.abs(
getDistance(getCubicBezierPoint(curve, point), circle.center) -
circle.radius
) <= tolerance
);
});
}
/**
* Checks if a previous curve fits the given circle.
*
* @param {Object} circle
* @param {Array} curve
* @return {Boolean}
*/
function isArcPrev(curve, circle) {
return isArc(curve, {
center: [circle.center[0] + curve[4], circle.center[1] + curve[5]],
radius: circle.radius,
});
}
/**
* Finds angle of a curve fitting the given arc.
* @param {Array} curve
* @param {Object} relCircle
* @return {Number} angle
*/
function findArcAngle(curve, relCircle) {
var x1 = -relCircle.center[0],
y1 = -relCircle.center[1],
x2 = curve[4] - relCircle.center[0],
y2 = curve[5] - relCircle.center[1];
return Math.acos(
(x1 * x2 + y1 * y2) / Math.sqrt((x1 * x1 + y1 * y1) * (x2 * x2 + y2 * y2))
);
}
/**
* Converts given path data to string.
*
* @param {Object} params
* @param {Array} pathData
* @return {String}
*/
function data2Path(params, pathData) {
return pathData.reduce(function (pathString, item) {
var strData = '';
if (item.args) {
strData = cleanupOutData(roundData(item.args.slice()), params);
}
return pathString + item.command + strData;
}, '');
}