Adaptation of Virtual Twins method from Jared Foster
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
prise6 e78be83e6e
Merge pull request #2 from prise6/fix-cran1
1 年之前
R fix incidence table 1 年之前
data Update manual 4 年之前
data-raw cran comments 2 年之前
man Make example checkable + delete import rpart function 1 年之前
revdep Add 'rmarkdown' in suggest field + update infos 1 年之前
vignettes delete toc 2 年之前
.Rbuildignore Add 'rmarkdown' in suggest field + update infos 1 年之前
.gitignore Add 'rmarkdown' in suggest field + update infos 1 年之前
DESCRIPTION Add infos about Jared Foster 1 年之前
LICENSE Ajout des fichiers de suivis 2 年之前
NAMESPACE Ajout des fichiers de suivis 2 年之前
NEWS Add 'rmarkdown' in suggest field + update infos 1 年之前
README.md add e1071 to suggest field 1 年之前
VirtualTwins.Rproj Change options values 4 年之前
cran-comments.md submission 4 fix table 1 年之前

README.md

aVirtualTwins

CRAN_Status_Badge

An adaptation of VirtualTwins method from Foster, J. C., Taylor, J. M.G. and Ruberg, S. J. (2011)

VirtualTwins is a method of subgroup identification from randomized clinical trial data.

In 2015, as an intern in a french pharmaceutical group, i worked on this method and develop a package based on Jared Foster and al method.

(Very) Quick Preview

# Load data
data(sepsis)
# Format data
vt.obj <- vt.data(dataset         = sepsis,
                  outcome.field   = "survival",
                  treatment.field = "THERAPY",
                  interactions    = TRUE)
# Print Incidences of sepsis data
vt.obj$getIncidences()
# $table
#            trt
# resp        0    1     sum  
#   0         101  188   289  
#   1         52   129   181  
#   sum       153  317   470  
#   Incidence 0.34 0.407 0.385
#
# $rr
# [1] 1.197059
#
# First step : create random forest model
vt.for <- vt.forest(forest.type  = "one",
                    vt.data      = vt.obj,
                    interactions = TRUE,
                    ntree        = 500)
# Second step : find rules in data 
vt.trees <- vt.tree(tree.type = "class",
                    vt.difft  = vt.for, 
                    threshold = quantile(vt.for$difft, seq(.5,.8,.1)),
                    maxdepth  = 2)
# Print results
vt.sbgrps <- vt.subgroups(vt.trees)
knitr::kable(vt.sbgrps)
Subgroup Subgroup size Treatement event rate Control event rate Treatment sample size Control sample size RR (resub) RR (snd)
tree1 PRAPACHE>=26.5 157 0.752 0.327 105 52 2.300 1.856
tree3 PRAPACHE>=26.5 & AGE>=51.74 120 0.897 0.31 78 42 2.894 1.991

 Infos

Currently this package works for RCT with two treatments groups and binary outcome.

Most of the package use Reference Class programing (in R). Feel free to create your own classes.

Of course, subgroup identification in general with two treatment and severals group can be possible.

Help & Documentation

See wiki tab.

Or:

vignette("full-example", package = "aVirtualTwins")

Or:

Here’s a link to my intern dissertation (french version) La recherche de sous-groupes par Virtual Twins (parts V & VI).

Install

# use devtools library
library(devtools)
# install from github
devtools::install_github("prise6/aVirtualTwins", build_vignettes = TRUE)
# load library
library(aVirtualTwins)

To-do list

  • Link to my simulation
  • Submit to CRAN
  • Use R6 for perfs issues
  • Vignette on-line

News

See NEWS file

Contact

vieille.francois at gmail.com