Adaptation of Virtual Twins method from Jared Foster

prise6 ea072ba3fc Update to-list 11 months ago
R 7cfbd2755c Update R files 11 months ago
data 79cc1ecf07 Update manual 2 years ago
data-raw 265ab95466 cran comments 11 months ago
man 5942b328e7 update md files 11 months ago
vignettes 3b9b7f0a80 delete toc 11 months ago
.Rbuildignore e5e2f1b442 Update Rbuildignore 11 months ago
.gitignore 155d95cc91 delete inst/doc 11 months ago
DESCRIPTION 38df0585ff Add *.9000 to indicate dev-version 11 months ago
LICENSE 350292f80d Ajout des fichiers de suivis 11 months ago
NAMESPACE 350292f80d Ajout des fichiers de suivis 11 months ago
NEWS cb06929340 Update NEWS 11 months ago
README.md ea072ba3fc Update to-list 11 months ago
VirtualTwins.Rproj fb214e6e26 Change options values 2 years ago
cran-comments.md 265ab95466 cran comments 11 months ago

README.md

aVirtualTwins

CRAN_Status_Badge

An adaptation of VirtualTwins method from Foster, J. C., Taylor, J. M.G. and Ruberg, S. J. (2011)

VirtualTwins is a method of subgroup identification from randomized clinical trial data.

In 2015, as an intern in a french pharmaceutical group, i worked on this method and develop a package based on Jared Foster and al method.

(Very) Quick Preview

# Load data
data(sepsis)
# Format data
vt.obj <- vt.data(dataset         = sepsis,
                  outcome.field   = "survival",
                  treatment.field = "THERAPY",
                  interactions    = TRUE)
# Print Incidences of sepsis data
vt.obj$getIncidences()
# $table
#            trt
# resp        0    1     sum  
#   0         101  188   289  
#   1         52   129   181  
#   sum       153  317   470  
#   Incidence 0.34 0.407 0.385
#
# $rr
# [1] 1.197059
#
# First step : create random forest model
vt.for <- vt.forest(forest.type  = "one",
                    vt.data      = vt.obj,
                    interactions = TRUE,
                    ntree        = 500)
# Second step : find rules in data 
vt.trees <- vt.tree(tree.type = "class",
                    vt.difft  = vt.for, 
                    threshold = quantile(vt.for$difft, seq(.5,.8,.1)),
                    maxdepth  = 2)
# Print results
vt.sbgrps <- vt.subgroups(vt.trees)
knitr::kable(vt.sbgrps)
Subgroup Subgroup size Treatement event rate Control event rate Treatment sample size Control sample size RR (resub) RR (snd)
tree1 PRAPACHE>=26.5 157 0.752 0.327 105 52 2.300 1.856
tree3 PRAPACHE>=26.5 & AGE>=51.74 120 0.897 0.31 78 42 2.894 1.991

## Infos

Currently this package works for RCT with two treatments groups and binary outcome.

Most of the package use Reference Class programing (in R). Feel free to create your own classes.

Of course, subgroup identification in general with two treatment and severals group can be possible.

Help & Documentation

See wiki tab.

Or:

vignette("full-example", package = "aVirtualTwins")

Or:

Here's a link to my intern dissertation (french version) La recherche de sous-groupes par Virtual Twins (parts V & VI).

Install

# use devtools library
library(devtools)
# install from github
devtools::install_github("prise6/aVirtualTwins", build_vignettes = TRUE)
# load library
library(aVirtualTwins)

To-do list

  • Link to my simulation
  • Submit to CRAN
  • Use R6 for perfs issues
  • Vignette on-line

News

See NEWS file

Contact

vieille.francois at gmail.com