Adaptation of Virtual Twins method from Jared Foster
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
prise6 e78be83e6e
Merge pull request #2 from prise6/fix-cran1
1 gadu atpakaļ
R fix incidence table 1 gadu atpakaļ
data Update manual 4 gadus atpakaļ
data-raw cran comments 2 gadus atpakaļ
man Make example checkable + delete import rpart function 1 gadu atpakaļ
revdep Add 'rmarkdown' in suggest field + update infos 1 gadu atpakaļ
vignettes delete toc 2 gadus atpakaļ
.Rbuildignore Add 'rmarkdown' in suggest field + update infos 1 gadu atpakaļ
.gitignore Add 'rmarkdown' in suggest field + update infos 1 gadu atpakaļ
DESCRIPTION Add infos about Jared Foster 1 gadu atpakaļ
LICENSE Ajout des fichiers de suivis 2 gadus atpakaļ
NAMESPACE Ajout des fichiers de suivis 2 gadus atpakaļ
NEWS Add 'rmarkdown' in suggest field + update infos 1 gadu atpakaļ
README.md add e1071 to suggest field 1 gadu atpakaļ
VirtualTwins.Rproj Change options values 4 gadus atpakaļ
cran-comments.md submission 4 fix table 1 gadu atpakaļ

README.md

aVirtualTwins

CRAN_Status_Badge

An adaptation of VirtualTwins method from Foster, J. C., Taylor, J. M.G. and Ruberg, S. J. (2011)

VirtualTwins is a method of subgroup identification from randomized clinical trial data.

In 2015, as an intern in a french pharmaceutical group, i worked on this method and develop a package based on Jared Foster and al method.

(Very) Quick Preview

# Load data
data(sepsis)
# Format data
vt.obj <- vt.data(dataset         = sepsis,
                  outcome.field   = "survival",
                  treatment.field = "THERAPY",
                  interactions    = TRUE)
# Print Incidences of sepsis data
vt.obj$getIncidences()
# $table
#            trt
# resp        0    1     sum  
#   0         101  188   289  
#   1         52   129   181  
#   sum       153  317   470  
#   Incidence 0.34 0.407 0.385
#
# $rr
# [1] 1.197059
#
# First step : create random forest model
vt.for <- vt.forest(forest.type  = "one",
                    vt.data      = vt.obj,
                    interactions = TRUE,
                    ntree        = 500)
# Second step : find rules in data 
vt.trees <- vt.tree(tree.type = "class",
                    vt.difft  = vt.for, 
                    threshold = quantile(vt.for$difft, seq(.5,.8,.1)),
                    maxdepth  = 2)
# Print results
vt.sbgrps <- vt.subgroups(vt.trees)
knitr::kable(vt.sbgrps)
Subgroup Subgroup size Treatement event rate Control event rate Treatment sample size Control sample size RR (resub) RR (snd)
tree1 PRAPACHE>=26.5 157 0.752 0.327 105 52 2.300 1.856
tree3 PRAPACHE>=26.5 & AGE>=51.74 120 0.897 0.31 78 42 2.894 1.991

 Infos

Currently this package works for RCT with two treatments groups and binary outcome.

Most of the package use Reference Class programing (in R). Feel free to create your own classes.

Of course, subgroup identification in general with two treatment and severals group can be possible.

Help & Documentation

See wiki tab.

Or:

vignette("full-example", package = "aVirtualTwins")

Or:

Here’s a link to my intern dissertation (french version) La recherche de sous-groupes par Virtual Twins (parts V & VI).

Install

# use devtools library
library(devtools)
# install from github
devtools::install_github("prise6/aVirtualTwins", build_vignettes = TRUE)
# load library
library(aVirtualTwins)

To-do list

  • Link to my simulation
  • Submit to CRAN
  • Use R6 for perfs issues
  • Vignette on-line

News

See NEWS file

Contact

vieille.francois at gmail.com